Monday, July 21, 2014

Life in Space

The Earth or the Blue planet where all of the living creature live is 4.54 billion years old. The World is the home of the entire living creature without which the survival is almost out of the question. According to the Big Bang theory, the Earth and other planets are supposed to be created from the exploding of the Sun and thus the Solar System has come to the existence. In the same case, there are so many asteroids which came into existence and other natural Satellites of the planets.

In so far, the Earth is also considered to be the Mother where human beings have born. The only planet in which the existence is possible is the Earth. But what if the question arises for the doomsday when the earth will stop revolving or the earth comes to the end of its life?

Can it be possible that the people in the earth can be survived? So far, in most of the science fiction movies, it show the earth is too older and it is also sure that everything is perishable including the Sun which is shining bright in the sky. So the scientists in NASA believes that the earth can be evacuated and so far, the people can be also traveled to the other place which is itself the Universe.


https://www.youtube.com/watch?v=a4aqMqIJ9n4&hd=1

Friday, July 18, 2014

Ghost Particle’s Ghost

What do you call the ghost of a ghost?
If you’re a particle physicist, you might call it a “sterile neutrino.” Neutrinos, known more colorfully as “ghost particles,” can pass through (almost) anything. If you surrounded the Sun with five light years’ worth of solid lead, a full half of the Sun’s neutrinos would slip right on through. Neutrinos have this amazing penetrating capability because they do not interact by the electromagnetic force, nor do they feel the strong nuclear force. The only forces they feel are the weak nuclear force and the even feebler tug of gravity.
XMM-Newton_Perseus-620
The Perseus galaxy cluster, one of 73 clusters from which mysterious x-rays, possible produced by sterile neutrinos, were observed. Credit: Chandra: NASA/CXC/SAO/E.Bulbul, et al.; XMM-Newton: ESA
When Wolfgang Pauli first postulated neutrinos in 1930, he thought that his proposed particles could never be detected. In fact, it took more than 25 years for physicists to confirm that neutrinos—Italian for “little neutral ones”—were real. Now, physicists are hunting for something even harder to spot: a hypothetical ghostlier breed of neutrinos called sterile neutrinos.
Today, we know of three different “flavors” of neutrinos: electron neutrinos, muon neutrinos and tau neutrinos (and their antimatter equivalents). In the the late 1960s, studies of the electron-type neutrinos emitted by the Sun led scientists to suspect that they were somehow disappearing or morphing into other forms. Measurements made in 1998 by the Super Kamiokande experiment strongly supported this hypothesis, and in 2001, the Sudbury Neutrino Observatoryclinched it.
One of the limitations of studying neutrinos from the Sun and other cosmic sources is that experimenters don’t have control over them. However, scientists can make beams of neutrinos in particle accelerators and also study neutrinos emitted by man-made nuclear reactors. When physicists studied neutrinos from these sources, a mystery presented itself. It looked like there weren’t three kinds of neutrinos, but rather four or perhaps more.
Ordinarily, this wouldn’t be cause for alarm, as the history of particle physics is full of the discovery of new particles. However, in 1990, researchers using the LEP accelerator demonstrated convincingly that there were exactly three kinds of ordinary neutrinos. Physicists were faced with a serious puzzle.
There were some caveats to the LEP measurement. It was only capable of finding neutrinos if they were low mass and interacted via the weak nuclear force. This led scientists to hypothesize that perhaps the fourth (and fifth and…) forms of neutrinos were sterile, a word coined by Russian physicist Bruno Pontecorvo to describe a form of neutrino that didn’t feel the weak nuclear force.
Searching for sterile neutrinos is a vibrant experimental program and a confusing one. Researchers pursuing some experiments, such as the LSND and MiniBoone, have published measurements consistent with the existence of these hypothetical particles, while others, like the Fermilab MINOS team, have ruled out sterile neutrinos with the same properties. Inconsistencies abound in the experimental world, leading to great consternation among scientists.
In addition, theoretical physicists have been busy. There are many different ways to imagine a particle that doesn’t experience the strong, weak, or electromagnetic forces (and is therefore very difficult to make and detect); proposals for a variety of different kinds of sterile neutrinos have proliferated wildly, and sterile neutrinos are even a credible candidate for dark matter.
Perhaps the only general statement we can make about sterile neutrinos is that they are spin ½ fermions, just like neutrinos, but unlike “regular” neutrinos, they don’t experience the weak nuclear force. Beyond that, the various theoretical ideas diverge. Some predict that sterile neutrinos have right-handed spin, in contrast to ordinary neutrinos, which have only left-handed spin. Some theories predict that sterile neutrinos will be very light, while others have them quite massive. If they are massive, that could explain why ordinary neutrinos have such a small mass: perhaps the mathematical product of the masses of these two species of neutrinos equals a constant, say proponents of what scientists call the “see-saw mechanism”; as one mass goes up, the other must go down, resulting in low-mass ordinary neutrinos and high-mass sterile ones.
Now, some astronomers have proposed sterile neutrinos could be the source of a mysterious excess of x-rays coming from certain clusters of galaxies. Both NASA’s Chandra satellite and the European Space Agency’s XMM-Newton have spottedan excess of x-ray emission at 3.5 keV. It is brighter than could immediately be accounted for by known x-ray sources, but it could be explained by sterile neutrinos decaying into photons and regular neutrinos. However, one should be cautious. There are tons of atomic emission lines in this part of the x-ray spectrum. One such line, an argon emission line, happens to be at 3.62 keV. In fact, if the authors allow a little more of this line than predicted, the possible sterile neutrino becomes far less convincing.
Thus the signal is a bit sketchy and could easily disappear with a better understanding of more prosaic sources of x-ray emission. This is not a criticism of the teams who have made the announcement, but an acknowledgement of the difficulty of the measurement. Many familiar elements emit x-rays in the 3.5 keV energy range, and though the researchers attempted to remove those expected signals, they may find that a fuller accounting negates the “neutrino” signal. Still, the excess was seen by more than one facility and in more than one cluster of galaxies, and the people involved are smart and competent, so it must be regarded as a possible discovery.
It is an incredible long shot that the excess of 3.5 keV x-ray from galaxy clusters is a sterile neutrino but, if it is, it will be a really big deal. The first order of business is a more detailed understanding of more ordinary emission lines. Unfortunately, only time will tell if we’ve truly seen a ghost.

Credits to 

Don Lincoln

Monday, July 14, 2014

Boron 'buckyball' discovered

The discovery 30 years ago of soccer-ball-shaped carbon molecules called buckyballs helped to spur an explosion of nanotechnology research. Now, there appears to be a new ball on the pitch.
Researchers from Brown University, Shanxi University and Tsinghua University in China have shown that a cluster of 40  forms a hollow molecular cage similar to a carbon buckyball. It's the first experimental evidence that a  cage structure—previously only a matter of speculation—does indeed exist.
"This is the first time that a boron cage has been observed experimentally," said Lai-Sheng Wang, a professor of chemistry at Brown who led the team that made the discovery. "As a chemist, finding new molecules and structures is always exciting. The fact that boron has the capacity to form this kind of structure is very interesting."
Wang and his colleagues describe the molecule, which they've dubbed borospherene, in the journal Nature Chemistry.
Carbon buckyballs are made of 60  arranged in pentagons and hexagons to form a sphere—like a soccer ball. Their discovery in 1985 was soon followed by discoveries of other hollow carbon structures including carbon nanotubes. Another famous carbon nanomaterial—a one-atom-thick sheet called graphene—followed shortly after.
After buckyballs, scientists wondered if other elements might form these odd hollow structures. One candidate was boron, carbon's neighbor on the periodic table. But because boron has one less electron than carbon, it can't form the same 60-atom structure found in the buckyball. The missing electrons would cause the cluster to collapse on itself. If a boron cage existed, it would have to have a different number of atoms.
Wang and his research group have been studying boron chemistry for years. In a paper published earlier this year, Wang and his colleagues showed that clusters of 36 boron atoms form one-atom-thick disks, which might be stitched together to form an analog to graphene, dubbed borophene. Wang's preliminary work suggested that there was also something special about boron clusters with 40 atoms. They seemed to be abnormally stable compared to other boron clusters. Figuring out what that 40-atom cluster actually looks like required a combination of experimental work and modeling using high-powered supercomputers.
On the computer, Wang's colleagues modeled over 10,000 possible arrangements of 40 boron atoms bonded to each other. The computer simulations estimate not only the shapes of the structures, but also estimate the electron binding energy for each structure—a measure of how tightly a molecule holds its electrons. The spectrum of binding energies serves as a unique fingerprint of each potential .
The next step is to test the actual binding energies of boron clusters in the lab to see if they match any of the theoretical structures generated by the computer. To do that, Wang and his colleagues used a technique called photoelectron spectroscopy.
Chunks of bulk boron are zapped with a laser to create vapor of boron atoms. A jet of helium then freezes the vapor into tiny clusters of atoms. The clusters of 40 atoms were isolated by weight then zapped with a second laser, which knocks an electron out of the cluster. The ejected electron flies down a long tube Wang calls his "electron racetrack." The speed at which the electrons fly down the racetrack is used to determine the cluster's electron binding energy spectrum—its structural fingerprint.
The experiments showed that 40-atom-clusters form two structures with distinct binding spectra. Those spectra turned out to be a dead-on match with the spectra for two structures generated by the computer models. One was a semi-flat molecule and the other was the buckyball-like spherical cage.
"The experimental sighting of a binding spectrum that matched our models was of paramount importance," Wang said. "The experiment gives us these very specific signatures, and those signatures fit our models."
The borospherene molecule isn't quite as spherical as its carbon cousin. Rather than a series of five- and six-membered rings formed by carbon, borospherene consists of 48 triangles, four seven-sided rings and two six-membered rings. Several atoms stick out a bit from the others, making the surface of borospherene somewhat less smooth than a buckyball.
As for possible uses for borospherene, it's a little too early to tell, Wang says. One possibility, he points out, could be hydrogen storage. Because of the electron deficiency of boron, borospherene would likely bond well with hydrogen. So tiny boron cages could serve as safe houses for hydrogen molecules.
But for now, Wang is enjoying the discovery.
"For us, just to be the first to have observed this, that's a pretty big deal," Wang said. "Of course if it turns out to be useful that would be great, but we don't know yet. Hopefully this initial finding will stimulate further interest in boron clusters and new ideas to synthesize them in bulk quantities."

Monday, July 7, 2014

Quantum Mechanics A Reality


For nearly a century, “reality” has been a murky concept. The laws of quantum physics seem to suggest that particles spend much of their time in a ghostly state, lacking even basic properties such as a definite location and instead existing everywhere and nowhere at once. Only when a particle is measured does it suddenly materialize, appearing to pick its position as if by a roll of the dice.

The experiments involve an oil droplet that bounces along the surface of a liquid. The droplet gently sloshes the liquid with every bounce. At the same time, ripples from past bounces affect its course. The droplet’s interaction with its own ripples, which form what’s known as a pilot wave, causes it to exhibit behaviors previously thought to be peculiar to elementary particles — including behaviors seen as evidence that these particles are spread through space like waves, without any specific location, until they are measured.This idea that nature is inherently probabilistic — that particles have no hard properties, only likelihoods, until they are observed — is directly implied by the standard equations of quantum mechanics. But now a set of surprising experiments with fluids has revived old skepticism about that worldview. The bizarre results are fueling interest in an almost forgotten version of quantum mechanics, one that never gave up the idea of a single, concrete reality.
Particles at the quantum scale seem to do things that human-scale objects do not do. They can tunnel through barriers, spontaneously arise or annihilate, and occupy discrete energy levels. This new body of research reveals that oil droplets, when guided by pilot waves, also exhibit these quantum-like features.
To some researchers, the experiments suggest that quantum objects are as definite as droplets, and that they too are guided by pilot waves — in this case, fluid-like undulations in space and time. These arguments have injected new life into a deterministic (as opposed to probabilistic) theory of the microscopic world first proposed, and rejected, at the birth of quantum mechanics.
“This is a classical system that exhibits behavior that people previously thought was exclusive to the quantum realm, and we can say why,” said John Bush, a professor of applied mathematics at the Massachusetts Institute of Technology who has led several recent bouncing-droplet experiments. “The more things we understand and can provide a physical rationale for, the more difficult it will be to defend the ‘quantum mechanics is magic’ perspective.”
Magical Measurements
The orthodox view of quantum mechanics, known as the “Copenhagen interpretation” after the home city of Danish physicist Niels Bohr, one of its architects, holds that particles play out all possible realities simultaneously. Each particle is represented by a “probability wave” weighting these various possibilities, and the wave collapses to a definite state only when the particle is measured. The equations of quantum mechanics do not address how a particle’s properties solidify at the moment of measurement, or how, at such moments, reality picks which form to take. But the calculations work. As Seth Lloyd, a quantum physicist at MIT, put it, “Quantum mechanics is just counterintuitive and we just have to suck it up.”
When light illuminates a pair of slits in a screen (top), the two overlapping wavefronts cooperate in some places and cancel out in between, producing an interference pattern. The pattern appears even when particles are shot toward the screen one by one (bottom), as if each particle passes through both slits at once, like a wave.
When light illuminates a pair of slits in a screen (top), the two overlapping wavefronts cooperate in some places and cancel out in between, producing an interference pattern. The pattern appears even when particles are shot toward the screen one by one (bottom), as if each particle passes through both slits at once, like a wave.  Akira Tonomura/Creative Commons
A classic experiment in quantum mechanics that seems to demonstrate the probabilistic nature of reality involves a beam of particles (such as electrons) propelled one by one toward a pair of slits in a screen. When no one keeps track of each electron’s trajectory, it seems to pass through both slits simultaneously. In time, the electron beam creates a wavelike interference pattern of bright and dark stripes on the other side of the screen. But when a detector is placed in front of one of the slits, its measurement causes the particles to lose their wavelike omnipresence, collapse into definite states, and travel through one slit or the other. The interference pattern vanishes. The great 20th-century physicist Richard Feynman said that this double-slit experiment “has in it the heart of quantum mechanics,” and “is impossible, absolutely impossible, to explain in any classical way.”
Some physicists now disagree. “Quantum mechanics is very successful; nobody’s claiming that it’s wrong,” said Paul Milewski, a professor of mathematics at the University of Bath in England who has devised computer models of bouncing-droplet dynamics. “What we believe is that there may be, in fact, some more fundamental reason why [quantum mechanics] looks the way it does.”
Riding Waves
The idea that pilot waves might explain the peculiarities of particles dates back to the early days of quantum mechanics. The French physicist Louis de Broglie presented the earliest version of pilot-wave theory at the 1927 Solvay Conference in Brussels, a famous gathering of the founders of the field. As de Broglie explained that day to Bohr, Albert Einstein, Erwin Schrödinger, Werner Heisenberg and two dozen other celebrated physicists, pilot-wave theory made all the same predictions as the probabilistic formulation of quantum mechanics (which wouldn’t be referred to as the “Copenhagen” interpretation until the 1950s), but without the ghostliness or mysterious collapse.
The probabilistic version, championed by Bohr, involves a single equation that represents likely and unlikely locations of particles as peaks and troughs of a wave. Bohr interpreted this probability-wave equation as a complete definition of the particle. But de Broglie urged his colleagues to use two equations: one describing a real, physical wave, and another tying the trajectory of an actual, concrete particle to the variables in that wave equation, as if the particle interacts with and is propelled by the wave rather than being defined by it.
For example, consider the double-slit experiment. In de Broglie’s pilot-wave picture, each electron passes through just one of the two slits, but is influenced by a pilot wave that splits and travels through both slits. Like flotsam in a current, the particle is drawn to the places where the two wavefronts cooperate, and does not go where they cancel out.
De Broglie could not predict the exact place where an individual particle would end up — just like Bohr’s version of events, pilot-wave theory predicts only the statistical distribution of outcomes, or the bright and dark stripes — but the two men interpreted this shortcoming differently. Bohr claimed that particles don’t have definite trajectories; de Broglie argued that they do, but that we can’t measure each particle’s initial position well enough to deduce its exact path.
In principle, however, the pilot-wave theory is deterministic: The future evolves dynamically from the past, so that, if the exact state of all the particles in the universe were known at a given instant, their states at all future times could be calculated.
At the Solvay conference, Einstein objected to a probabilistic universe, quipping, “God does not play dice,” but he seemed ambivalent about de Broglie’s alternative. Bohr told Einstein to “stop telling God what to do,” and (for reasons that remain in dispute) he won the day. By 1932, when the Hungarian-American mathematician John von Neumann claimed to have proven that the probabilistic wave equation in quantum mechanics could have no “hidden variables” (that is, missing components, such as de Broglie’s particle with its well-defined trajectory), pilot-wave theory was so poorly regarded that most physicists believed von Neumann’s proof without even reading a translation.
At the fifth Solvay Conference, a 1927 meeting of the founders of quantum mechanics, Louis de Broglie (middle row, third from right) argued for a deterministic formulation of quantum mechanics called pilot-wave theory. But a probabilistic version of the theory championed by Niels Bohr (middle row, far right) won the day.
At the fifth Solvay Conference, a 1927 meeting of the founders of quantum mechanics, Louis de Broglie (middle row, third from right) argued for a deterministic formulation of quantum mechanics called pilot-wave theory. But a probabilistic version of the theory championed by Niels Bohr (middle row, far right) won the day.
More than 30 years would pass before von Neumann’s proof was shown to be false, but by then the damage was done. The physicist David Bohm resurrected pilot-wave theory in a modified form in 1952, with Einstein’s encouragement, and made clear that it did work, but it never caught on. (The theory is also known as de Broglie-Bohm theory, or Bohmian mechanics.)
Later, the Northern Irish physicist John Stewart Bell went on to prove a seminal theorem that many physicists today misinterpret as rendering hidden variables impossible. But Bell supported pilot-wave theory. He was the one who pointed out the flaws in von Neumann’s original proof. And in 1986 he wrote that pilot-wave theory “seems to me so natural and simple, to resolve the wave-particle dilemma in such a clear and ordinary way, that it is a great mystery to me that it was so generally ignored.”
The neglect continues. A century down the line, the standard, probabilistic formulation of quantum mechanics has been combined with Einstein’s theory of special relativity and developed into the Standard Model, an elaborate and precise description of most of the particles and forces in the universe. Acclimating to the weirdness of quantum mechanics has become a physicists’ rite of passage. The old, deterministic alternative is not mentioned in most textbooks; most people in the field haven’t heard of it. Sheldon Goldstein, a professor of mathematics, physics and philosophy at Rutgers University and a supporter of pilot-wave theory, blames the “preposterous” neglect of the theory on “decades of indoctrination.” At this stage, Goldstein and several others noted, researchers risk their careers by questioning quantum orthodoxy.
A Quantum Drop
When a droplet bounces along the surface of a liquid toward a pair of openings in a barrier, it passes randomly through one opening or the other while its “pilot wave,” or the ripples on the liquid’s surface, passes through both. After many repeat runs, a quantum-like interference pattern appears in the distribution of droplet trajectories.
When a droplet bounces along the surface of a liquid toward a pair of openings in a barrier, it passes randomly through one opening or the other while its “pilot wave,” or the ripples on the liquid’s surface, passes through both. After many repeat runs, a quantum-like interference pattern appears in the distribution of droplet trajectories.  Yves Couder et al.
Now at last, pilot-wave theory may be experiencing a minor comeback — at least, among fluid dynamicists. “I wish that the people who were developing quantum mechanics at the beginning of last century had access to these experiments,” Milewski said. “Because then the whole history of quantum mechanics might be different.”
The experiments began a decade ago, when Yves Couder and colleagues at Paris Diderot University discovered that vibrating a silicon oil bath up and down at a particular frequency can induce a droplet to bounce along the surface. The droplet’s path, they found, was guided by the slanted contours of the liquid’s surface generated from the droplet’s own bounces — a mutual particle-wave interaction analogous to de Broglie’s pilot-wave concept.
In a groundbreaking experiment, the Paris researchers used the droplet setup to demonstrate single- and double-slit interference. They discovered that when a droplet bounces toward a pair of openings in a damlike barrier, it passes through only one slit or the other, while the pilot wave passes through both. Repeated trials show that the overlapping wavefronts of the pilot wave steer the droplets to certain places and never to locations in between — an apparent replication of the interference pattern in the quantum double-slit experiment that Feynman described as “impossible … to explain in any classical way.” And just as measuring the trajectories of particles seems to “collapse” their simultaneous realities, disturbing the pilot wave in the bouncing-droplet experiment destroys the interference pattern.
Droplets can also seem to “tunnel” through barriers, orbit each other in stable “bound states,” and exhibit properties analogous to quantum spin and electromagnetic attraction. When confined to circular areas called corrals, they form concentric rings analogous to the standing waves generated by electrons in quantum corrals. They even annihilate with subsurface bubbles, an effect reminiscent of the mutual destruction of matter and antimatter particles.
For more info watch video on youtube
https://www.youtube.com/watch?v=1-_IRbu1gAo
In each test, the droplet wends a chaotic path that, over time, builds up the same statistical distribution in the fluid system as that expected of particles at the quantum scale. But rather than resulting from indefiniteness or a lack of reality, these quantum-like effects are driven, according to the researchers, by “path memory.”Every bounce of the droplet leaves a mark in the form of ripples, and these ripples chaotically but deterministically influence the droplet’s future bounces and lead to quantum-like statistical outcomes. The more path memory a given fluid exhibits — that is, the less its ripples dissipate — the crisper and more quantum-like the statistics become. “Memory generates chaos, which we need to get the right probabilities,” Couder explained. “We see path memory clearly in our system. It doesn’t necessarily mean it exists in quantum objects, it just suggests it would be possible.”
The quantum statistics are apparent even when the droplets are subjected to external forces. In one recent test, Couder and his colleagues placed a magnet at the center of their oil bath and observed a magnetic ferrofluid droplet. Like an electron occupying fixed energy levels around a nucleus, the bouncing droplet adopted a discrete set of stable orbits around the magnet, each characterized by a set energy level and angular momentum. The “quantization” of these properties into discrete packets is usually understood as a defining feature of the quantum realm.
As a droplet wends a chaotic path around the liquid’s surface, it gradually builds up quantum-like statistics.
As a droplet wends a chaotic path around the liquid’s surface, it gradually builds up quantum-like statistics.  Harris et al., PRL(2013)
If space and time behave like a superfluid, or a fluid that experiences no dissipation at all, then path memory could conceivably give rise to the strange quantum phenomenon of entanglement — what Einstein referred to as “spooky action at a distance.” When two particles become entangled, a measurement of the state of one instantly affects that of the other. The entanglement holds even if the two particles are light-years apart.
In standard quantum mechanics, the effect is rationalized as the instantaneous collapse of the particles’ joint probability wave. But in the pilot-wave version of events, an interaction between two particles in a superfluid universe sets them on paths that stay correlated forever because the interaction permanently affects the contours of the superfluid. “As the particles move along, they feel the wave field generated by them in the past and all other particles in the past,” Bush explained. In other words, the ubiquity of the pilot wave “provides a mechanism for accounting for these nonlocal correlations.” Yet an experimental test of droplet entanglement remains a distant goal.
Subatomic Realities
Many of the fluid dynamicists involved in or familiar with the new research have become convinced that there is a classical, fluid explanation of quantum mechanics. “I think it’s all too much of a coincidence,” said Bush, who led a June workshop on the topic in Rio de Janeiro and is writing a review paper on the experiments for the Annual Review of Fluid Mechanics.
Quantum physicists tend to consider the findings less significant. After all, the fluid research does not provide direct evidence that pilot waves propel particles at the quantum scale. And a surprising analogy between electrons and oil droplets does not yield new and better calculations. “Personally, I think it has little to do with quantum mechanics,” said Gerard ’t Hooft, a Nobel Prize-winning particle physicist at Utrecht University in the Netherlands. He believes quantum theory is incomplete but dislikes pilot-wave theory.
Many working quantum physicists question the value of rebuilding their highly successful Standard Model from scratch. “I think the experiments are very clever and mind-expanding,” said Frank Wilczek, a professor of physics at MIT and a Nobel laureate, “but they take you only a few steps along what would have to be a very long road, going from a hypothetical classical underlying theory to the successful use of quantum mechanics as we know it.”
“This really is a very striking and visible manifestation of the pilot-wave phenomenon,” Lloyd said. “It’s mind-blowing — but it’s not going to replace actual quantum mechanics anytime soon.”
In its current, immature state, the pilot-wave formulation of quantum mechanics only describes simple interactions between matter and electromagnetic fields, according toDavid Wallace, a philosopher of physics at the University of Oxford in England, and cannot even capture the physics of an ordinary light bulb. “It is not by itself capable of representing very much physics,” Wallace said. “In my own view, this is the most severe problem for the theory, though, to be fair, it remains an active research area.”
Pilot-wave theory has the reputation of being more cumbersome than standard quantum mechanics. Some researchers said that the theory has trouble dealing with identical particles, and that it becomes unwieldy when describing multiparticle interactions. They also claimed that it combines less elegantly with special relativity. But other specialists in quantum mechanics disagreed or said the approach is simply under-researched. It may just be a matter of effort to recast the predictions of quantum mechanics in the pilot-wave language, said Anthony Leggett, a professor of physics at the University of Illinois, Urbana-Champaign, and a Nobel laureate. “Whether one thinks this is worth a lot of time and effort is a matter of personal taste,” he added. “Personally, I don’t.”
On the other hand, as Bohm argued in his 1952 paper, an alternative formulation of quantum mechanics might make the same predictions as the standard version at the quantum scale, but differ when it comes to smaller scales of nature. In the search for a unified theory of physics at all scales, “we could easily be kept on the wrong track for a long time by restricting ourselves to the usual interpretation of quantum theory,” Bohm wrote.
Some enthusiasts think the fluid approach could indeed be the key to resolving the long-standing conflict between quantum mechanics and Einstein’s theory of gravity, which clash at infinitesimal scales.
“The possibility exists that we can look for a unified theory of the Standard Model and gravity in terms of an underlying, superfluid substrate of reality,” said Ross Anderson, a computer scientist and mathematician at the University of Cambridge in England, and the co-author of a recent paper on the fluid-quantum analogy. In the future, Anderson and his collaborators plan to study the behavior of “rotons” (particle-like excitations) in superfluid helium as an even closer analog of this possible “superfluid model of reality.”
But at present, these connections with quantum gravity are speculative, and for young researchers, risky ideas. Bush, Couder and the other fluid dynamicists hope that their demonstrations of a growing number of quantum-like phenomena will make a deterministic, fluid picture of quantum mechanics increasingly convincing.
“With physicists it’s such a controversial thing, and people are pretty noncommittal at this stage,” Bush said. “We’re just forging ahead, and time will tell. The truth wins out in the end.”
Credit and Via : www.wired.com

Has Science Discovered God?

Has Science Discovered God?

Einstein didn’t believe it was possible.


Stephen Hawking said it might be the greatest scientific discovery of all time.

What discovery has baffled the greatest scientific minds of the past century, and why has it caused them to rethink the origin of our universe? New, more powerful, telescopes have revealed mysteries about our universe that have raised new questions about the origin of life.
Has science discovered God?
But wait a minute! Hasn’t science proven we don’t need God to explain the universe? Lightning, earthquakes and even babies used to be explained as acts of God. But now we know better. What is it about this discovery that is so fundamentally different, and why has it stunned the scientific world?
This discovery and what molecular biologists have learned about the sophisticated coding within DNA have many scientists now admitting that the universe appears to be part of a grand design.
One cosmologist put it this way: “Many scientists, when they admit their views, incline toward the teleological or design argument.”[1]
Surprisingly, many scientists who are talking about God have no religious belief whatsoever.[2]
So, what are these stunning discoveries that have scientists suddenly speaking of God? Three revolutionary discoveries from the fields of astronomy and molecular biology stand out:
1. The universe had a beginning
2. The universe is just right for life
3. DNA coding reveals intelligence

Read more on
http://y-jesus.com/more/science-christianity-compatible/?gclid=COeTuoris78CFZYWjgodeA8A-g

Supermasssive Black Hole One or More

Scientists have just discovered a distant galaxy with not one but three supermassive black holes at its core.

The new finding suggests that tight-knit groups of these giant black holesare far more common than previously thought, and it potentially reveals a new way to easily detect them, researchers say. Supermassive black holes millions to billions of times the mass of the sun are thought to lurk at the hearts of virtually every large galaxy in the universe.
Most galaxies have just one supermassive black hole at their center. However, galaxies evolve through merging, and merged galaxies can sometimes possess multiple supermassive black holes. 

Friday, July 4, 2014

Time Travel Wormhole A Reality or still a Mystery

 The idea of traversable wormholes has been science fiction fodder since Einstein first theorized their existence with the formulation of his general theory of relativity, but do wormholes even exist in nature? Actually, we have no idea if they exist or not, but if they do, theoretical physicists have proposed that they could act as portals into the future and the past or connect two distant regions of space.
But before you grab your Grays Sports Almanac and get ready for some temporal mischief, there’s one huge caveat to this idea — only photons may travel… and even photons may be too much of a stretch for the hypothetical shortcut through spacetime.

In a paper published to the arXiv preprint service (and submitted to the journal Physical Review D), theoretical physicist Luke Butcher of the University of Cambridge has revisited wormhole theory and potentially found a way to bridge these notoriously unstable entities.
In the late 1980s, physicist Kip Thorne, of the California Institute of Technology (Caltech), theorized that to make a wormhole ‘traversable’ — as in to actually make these spacetime shortcuts stable enough to travel through — some form of negative energy would be required. In the quantum world, this negative energy could come in the form of Casimir energy.
It is well known that if two perfectly smooth plates are held very close together in a vacuum, quantum effects between the plates will have a net repulsive (or attractive, depending on the plate configuration) effect between the two. This is caused by waves of energy being too large to fit between the plates, causing a net negative energy between the plates when compared with the surrounding “normal” space.
As realized by Thorne and his Caltech team, this Casimir energy could be applied to the neck of a wormhole, potentially holding it open long enough for something to pass through.
Alas, we are talking about quantum-sized wormhole throats, meaning Marty McFly’s speeding DeLorean will be left revving in the 1985 parking lot, unable to squeeze through. But even if some quantum-sized traveler could pass through the wormhole’s neck, the wormhole would still likely collapse very quickly.
On reevaluating this scenario, Butcher has identified some more stable wormhole configurations and, in certain situations, the wormhole collapse could be prevented for an “arbitrarily long time.” But for this to happen, the wormhole needs to be very long and have a very narrow throat. In this case it seems possible that photons could traverse the wormhole.
“(T)he negative Casimir energy does allow the wormhole to collapse extremely slowly, its lifetime growing without bound as the throat-length is increased,” writes Butcher. “We find that the throat closes slowly enough that its central region can be safely traversed by a pulse of light.”
Butcher admits that although it’s not clear from his calculations whether the light pulse will be able to complete its journey from one end to the other, there is a tantalizing possibility for sending signals faster than the speed of light or even back in time.
“These results tentatively suggest that a macroscopic traversable wormhole might be sustained by its own Casimir energy, providing a mechanism for faster-than-light communication and closed causal curves.”
For the moment, this work is highly theoretical, but, as pointed out by Matt Visser of Victoria University of Wellington, New Zealand, in New Scientist on Tuesday, this research could renew interest in the study of wormholes and their potential spacetime-bridging capabilities.
So if we were to look for physical evidence of wormholes, could this research help us? Could we perhaps look out for be some kind of unique polarization of light that has traveled from another part of the Universe or some other time, appearing randomly in our local volume of spacetime? For answers to these questions, and as to whether this may spawn some kind of faster-then-light communications technology, we’ll likely have to wait until the theoretical physicists have crunched more numbers.

Thursday, July 3, 2014

Sky on the earth

Another stunning night photo taken at the Salar de Uyuni in Bolivia. The beautiful arch of the Milky Way, we can also see the Southern Cross, and the Coal Sack, located slightly to the left of the man's figure, on the Milky Way. Beautiful constellation Orion on the lower middle right, it is reflected on the salt slab, it is horizontally, and Betelgeuse is on the opposite shoulder of Orion, as it is visible on the Southern Hemisphere. Brilliant stars Sirius and Canopus also visibly shining, and the Large Magellan Cloud too. People that have been on this area, say, at times it is not easy to know where is the horizon, but gives the impression of being in space, or the sky among clouds by day, or the stars by night. This Salar de Uyuni is a true marvelous area.
https://www.facebook.com/ScienceSpiritualityCivilization Find more on this page.....

Life in Space Possible


Yes, you read that right, NASA is launching an initiative to grow plants on the moon. This will help to answer the question, “can humans live and work on the moon long term.” I’m not talking about a few days, or even a few years, but can a human live one the lunar surface for decades. Plants are a key step in this plan.

Firstly, plants have genetic material that can be damaged in the harsh environment of space in a similar manner to humans. Watching how plants survive and reproduce over a few generations could start revealing the potential problems of long term exposure to space. The moral of the story is, if we can send plants to the moon, and the plants survive, then we probably can survive too. This will also be some of the first long term tests that study how organisms live in non-Earth gravity.
Furthermore, plants also add psychological comfort, which would be nice for the first batch of Lunar colonists. Building a plant habitat would also help us to improve on and develop technologies that allow living things to thrive in non-Earth environments. It’s important to note that this would be the first life-science experiment conducted on another world, which is incredibly exciting.
The habitat will be a self-contained module that’ll be delivered to the Lunar surface on any NASA or commercial lander. The module will contain Arabidopsis, basil, and turnips seeds. Once on the lunar surface (hopefully in late 2015), water will be added to the lunar module and an identical control on Earth. The growth of the seeds will be monitored for 10 or so days, then the data will be crunched and we’ll send follow up experiments.

Wednesday, July 2, 2014

NASA launches new Satellite to monitor carbon dioxide


NASA has launched its first spacecraft devoted to monitoring atmospheric carbon dioxide, the heat-trapping gas thought to be responsible for much of Earth's recent warming trend.
The space agency's Orbiting Carbon Observatory-2 satellite (OCO-2) blasted off today (July 2) from Vandenberg Air Force Base in California at 5:56 a.m. EDT (0956 GMT, 2:56 a.m. local time), carried aloft by a United Launch Alliance Delta 2 rocket. The liftoff was originally scheduled for Tuesday (July 1), but a problem with the launch pad's water system caused a one-day delay.

The satellite will measure carbon dioxide levels in Earth's atmosphere 24 times every second, revealing in great detail where the gas is being produced and where it is being pulled out of the air — CO2 sources and sinks, in scientists' parlance

Friday, June 27, 2014

Warmhole or a Supermassive Blackhole

           Artist's impression of a supermassive black hole consuming matter from its accretion disk.
Although we have a pretty good idea that our galaxy contains a supermassive black hole at its core, there could be another — albeit rather exotic — explanation for our observations of Sagittarius A*. It might be a wormhole.
This is according to two researchers who explore the possibility in a new paper submitted to the arXiv pre-print service. Although their work is purely theoretical, Zilong Li and Cosimo Bambi of Fudan University in Shanghai have identified a specific emission signature surrounding their hypothetical wormhole, a signature that may be detected by a sophisticated instrument that will soon be attached to one of the world’s most powerful telescopes.
Sagittarius A* (or Sgr A*) is a region in the Milky Way’s core that generates powerful radio waves and astronomers have long suspected that it is the location of a black hole approximately 4 million times the mass of our sun. It wasn’t until astronomers were able to track stars orbiting close to the suspected black hole’s event horizon, however, that the supermassive black hole was confirmed to be there.
But supermassive black holes are a conundrum.
Now we know what signature our supermassive black hole generates, astronomers have discovered that the majority of other galaxies also possess supermassive black holes in their cores. Even when looking into the furthest cosmological distances at the youngest known galaxies, they also appear to host these black hole behemoths.
For a black hole to gain so much mass, it’s logical to think they need lots of time to pile on the mass — eating interstellar gas, stars and other galactic material. But to explain the earliest supermassive black holes in the youngest galaxies, there had to be some as-yet to be understood rapid growth mechanism.
According to Li and Bambi, however, to explain our observations of Sgr A* and other galaxies’ cores, a primordial consequence of Einstein’s general theory of relativity may be called into play instead, thereby sidestepping the puzzle of how supermassive black holes grew so big so quickly.
“While of exotic nature, at least some kinds of primordial WHs (wormholes) can be viable candidates to explain the supermassive objects at the center of galaxies,” they write. “These objects have no solid surface, and therefore they may mimic the presence of an event horizon. They would have been produced in the early Universe and grown during inflation, so they could explain their presence even at very high redshift.”
High redshift galaxies are the youngest galaxies we can observe; where the galactic light has traveled billions of light-years, with frequencies shifted to the reddest part of the electromagnetic spectrum.
The type of wormhole that can mimic a black hole could only have been formed during the Big Bang, exerting a mass millions of times our sun’s mass, possibly explaining why the earliest galaxies appear to have supermassive black holes in their cores; they may not be black holes at all, they could in fact be gargantuan wormholes, linking disparate regions of space and time. (Though whether they can be traversed would likely remain a mystery.)
This may sound like some theoretical fun and games bordering on science fiction, but Li and Bambi have identified a powerful new instrument that could be used to differentiate emissions from space plasma surrounding the Sgr A* black hole or hypothetical wormhole.
GRAVITY will soon be installed at the ESO’s Very Large Telescope (VLT) in the Atacama Desert in Chile and will be used to observe the galactic center with unprecedented precision. The researchers hope to analyze emission data from energized gases (or plasma) that could be found around the object inside Sgr A*. Should the object in fact be a wormhole, that plasma will generate a very different signature as the hypothetical wormhole will be physically smaller than a supermassive black hole.
By modeling a hot blob of plasma trapped in the warped spacetime surrounding a black hole and a wormhole, Li and Bambi noticed two very different emission signatures that both cases will generate. A wormhole would generate a “very narrow emission line,” whereas a black hole would have spectra that is “broad and skewed as a result of special and general relativistic effects,” they write.
It is rare that such exotic theories could be supported or disproved by an instrument that will be commissioned within a couple of years, but it will be very exciting to see whether the plasma emissions around the object in Sgr A* are more black hole-like or wormhole-like. And although the chances are slim, if the latter is detected, it could re-write our understanding of the Cosmos.
Source: arXiv via arXiv blog