Wednesday, June 1, 2016

Black Hole and Milky Way

our universe itself is a mystery and black hole remain one of the most biggest mystery of all time,
"The Center of our Milky Way Galaxy is a place of extremes," says Mark Morris, an expert on The Galactic Center at UCLA. "For every star in our nighttime sky, for example, there would be a million for someone looking up from a planet near the Galactic center. So stars are packed quite close together. Then, there’s that supermassive black hole that is sitting in there, relatively quiet for now, but occasionally producing a dramatic outpouring of energy. The UCLA Galactic center group been use the Keck Telescopes in Hawaii to follow its activity for the last 17 years, watching not only the fluctuating emission from the black hole, but also watching the stars around it as they rapidly orbit the black hole."

Morris had predicted more than  a decade ago that a process called dynamical friction would cause stellar black holes to sink toward the center of the Galaxy. Black holes are formed as remnants of the explosions of massive stars and have masses of about 10 suns. As black holes orbit the center of the Galaxy at a distance of several light years, they pull on surrounding stars, which pull back on the black holes. The net effect is that black holes spiral inward, and the low-mass stars move out. From the estimated number of stars and black holes in the Galactic Center region, dynamical friction is expected to produce a dense swarm of 20,000 black holes within three light years of Sgr A*. A similar effect is at work for neutron stars, but to a lesser extent because they have a lower mass.
Once black holes are concentrated near Sgr A*, they will have numerous close encounters with normal stars there, some of which are in binary star systems. The intense gravity of a black hole can induce an ordinary star to "change partners" and pair up with the black hole while ejecting its companion. This process and a similar one for neutron stars are expected to produce several hundreds of black hole and neutron star binary systems.
The black holes and neutron stars in the cluster are expected to gradually be swallowed by the supermassive black hole, Sgr A*, at a rate of about one every million years. At this rate, about 10,000 black holes and neutron stars would have been captured in a few billion years, adding about 3 percent to the mass of the central supermassive black hole, which is currently estimated to contain the mass of 3.7 million suns.
In the meantime, the acceleration of low-mass stars by black holes will eject low-mass stars from the central region. This expulsion will reduce the likelihood that normal stars will be captured by the central supermassive black hole. This may explain why the central regions of some galaxies, including the Milky Way, are fairly quiet even though they contain a supermassive black hole
The black hole at the center of our Milky Way Galaxy is a monster that contains about 4 million times more material than our sun. But compared to the giant black holes in the centers of other galaxies, our black hole is strangely quiet. A team of Japanese astronomers may have helped solve the mystery. By using four satellites that catch X-rays from outer space, they found evidence that our black hole suddenly emitted a powerful outburst of X-ray light 300 years ago.

Sagittarius_A-

"We have wondered why the Milky Way’s black hole appears to be a slumbering giant," says team leader Tatsuya Inui of Kyoto University in Japan. "But now we realize that the black hole was far more active in the past. Perhaps it’s just resting after a major outburst."
The black hole itself is known as Sagittarius A* for its location in the constellation Sagittarius (image above with light echoes) Normally, the black hole is quiet, producing billions of times less energy than giant black holes in other galaxies. But according to Inui and his colleagues, the black hole must have produced an incredible burst of X-ray light three centuries ago. They made this discovery by noticing a strange effect known as "light echoes."
Light echoes are similar to the sound echoes we hear when sound waves reverberate in a room or valley. In the case of light echoes, the X-rays produced by the giant outburst have been racing outward across trillions of miles of space at the speed of light. Three hundred years later, they have traveled far enough that they reach a giant gas cloud known as Sagittarius B2. Once they penetrate this cloud, they heat up the gas, and cause it to glow brightly in X-rays. But once the X-rays pass through the cloud, it cools down, and its brightness fades back to normal. Sagittarius B2 acts like a giant mirror. The light echoes inside the cloud give astronomers a record of the black hole’s energy output 300 years earlier.
By using Japan’s Suzaku and ASCA X-ray satellites, NASA’s Chandra X-ray Observatory, and the European Space Agency’s XMM-Newton X-ray Observatory, Inui’s team could observe the behavior of the cloud.
"By observing how this cloud lit up and faded over 10 years, we could trace back the black hole’s activity 300 years ago," says team member Katsuji Koyama of Kyoto University. "The black hole was a million times brighter three centuries ago. It must have unleashed an incredibly powerful flare."
It takes light from the Milky Way Galaxy’s center about 26,000 years to reach Earth, so when astronomers observe the black hole and the gas cloud, they are actually seeing events that took place 26,000 years ago. At that time, Earth was still plunged in the last ice age, and humans were living in caves.
Astronomers don’t know why Sagittarius A* produced such a powerful flare three centuries ago. One possibility, says Koyama, is that a giant star exploded. The blast wave from the explosion plowed up gas and swept it into the black hole, leading to a temporary feeding frenzy that awoke the black hole from its slumber and produced the giant flare.
On September 14, 2013, astronomers caught the largest X-ray flare ever detected from Sagittarius A* (Sgr A*) shown in the image at the top of the page. This event, which was captured by NASA's Chandra X-ray Observatory, was 400 times brighter than the usual X-ray output from Sgr A*, as described in our press release. The main portion of this graphic shows the area around Sgr A* in a Chandra image where low, medium, and high-energy X-rays are red, green, and blue respectively. The inset box contains an X-ray movie of the region close to Sgr A* and shows the giant flare, along with much steadier X-ray emission from a nearby magnetar, to the lower left. A magnetar is a neutron star with a strong magnetic field. A little more than a year later, astronomers saw another flare from Sgr A* that was 200 times brighter than its normal state in October 2014.
Astronomers have two theories about what could be causing these "megaflares" from Sgr A*. The first idea is that the strong gravity around Sgr A* tore apart an asteroid in its vicinity, heating the debris to X-ray-emitting temperatures before devouring the remains. Their other proposed explanation involves the strong magnetic fields around the black hole. If the magnetic field lines reconfigured themselves and reconnected, this could also create a large burst of X-rays. Such events are seen regularly on the Sun and the events around Sgr A* appear to have a similar pattern in intensity levels to those.
Researchers have been using Chandra to monitor Sgr A* since the telescope was launched in 1999. Recently, astronomers have been closely watching Sgr A* to see if the black hole would consume parts of a nearby cloud of gas known as G2 and cause flares in X-rays. Due to G2's distance from Sgr A* at the time of the September 2013 flare, however, researchers do not think the gas cloud was responsible for the spike in X-rays.
In addition to the giant flares, the G2 observing campaign with Chandra also collected more data on the magnetar located close to Sgr A*. This magnetar is undergoing a long X-ray outburst, and the Chandra data are allowing astronomers to better understand this unusual object.

via http://www.dailygalaxy.com/

Friday, January 15, 2016

Brightest Supernova .

Brightest supernova ever seen pushes theoretical models to the edge

Researchers have discovered the brightest supernova ever seen, and the unusual object powering it could challenge what physicists know about dying stars.

When massive stars die, they do not go gently into the night. Instead, they expel most of their mass outward in a powerful explosion called a supernova, leaving behind a glowing cloud of gas and the collapsed remains of the former star’s core. In June 2015, a supernova appeared in the sky over the Southern Hemisphere, and astronomers believe it could mark the death throes of a very unusual star.

The supernova, named ASASSN-15lh, was 20 times brighter at its peak than the combined light of the Milky Way galaxy’s 100 billion stars, making it the brightest supernova ever observed. In fact, it’s twice as bright as the previous record-holder.

Powering A Superluminous Supernova

An exploding star releases a tremendous amount of energy, but it’s not enough to power anything as bright as ASASSN-15lh. Instead, a team of astronomers led by Subo Dong of China’s Kavli Institute say that the superluminous supernova could be getting its energy from an unusual object called a magnetar. They published their findings today in the journal Science.

When a star dies, its mass collapses onto the core. Much of it gets blown away in an explosion about a second later, but what remains is a very dense mass of neutrons called a neutron star. Once in a while, a neutron star is born with a stronger magnetic field than usual — about 10 trillion times stronger than Earth’s magnetic field — and astronomers call these objects magnetars.

Astronomers have found magnetars at the center of supernova remnants here in the Milky Way, but they’re nothing like the fast-spinning magnetar at the heart of ASASSN-15lh. Most magnetars rotate slowly, once every one to ten seconds, and they don’t release much energy into the surrounding supernova. But Dong and his colleagues think that the magnetar at the heart of ASASSN-15lh is rotating a thousand times a second. That’s right at the limit of how fast theoretical physicists believe a magnetar can rotate.

False-color images showing the host galaxy before the explosion of ASASSN-15lh taken by the Dark Energy Camera (left), and the supernova by the Las Cumbres Observatory Global Telescope Network 1-meter telescope network (right).

The Dark Energy Survey, B. Shappee and the ASAS-SN team

The energy from that fast rotation is the engine that powers the supernova. “As it slows down, and it rotates slower and slower and slower, what's happening is that it's shedding its rotatational energy,” explained coauthor Todd Thompson of Ohio State University. “It's flying out in this big energized wind that then shocks the supernova and makes it extra bright for us.”

To produce a supernova as bright as ASASSN-15lh, nearly all of the the magnetar’s energy has to be converted into light. That kind of efficiency is technically possible but very rare, and it pushes the limits of how magnetars, as we know them, work.

“You have to take a very fast-spinning magnetar and then extract all the energy from it to power what we have been seeing in this case,” says coauthor Kris Stanek, also of Ohio State University.

The team says it’s an extreme scenario that’s right on the edge of what physicists consider possible for a magnetar, but they also say it’s the most plausible explanation for ASASSN-15lh’s unprecedented brightness.

An Unusual Star

The star that exploded to produce ASASSN-15lh would have been a massive, blue, hot star, rotating rapidly. It must have shed its outer layers of hydrogen and helium shortly before it died, because those elements are absent from the supernova. Several telescopes around the world have studied the supernova’s spectrum, the presence or absence of different wavelengths of light, which can tell physicists which elements are present in the gas cloud.

It may have been a type of massive star called a Wolf-Rayet star, although astronomers can’t yet say for sure. “They’re stars that have no hydrogen or helium, and many of them are rapidly rotating, they are called Wolf-Rayet stars. I would say it's not impossible that it is somehow related to those type of stars, because we see those type of stars around, and they meet the qualifications that I just gave you: rare, no hydrogen or helium, massive, and at least a fraction of them are rapidly rotating.”

A Collaborative Project

Because ASASSN-15lh is between 3.8 and 4 billion light years away, observers here on Earth are seeing the ghost of an explosion that happened billions of years ago, while our planet was still in the process of cooling.

The light from that distant, long-ago explosion reached Earth in June of 2015, where it was first noticed by a pair of telescopes in Chile, part of the All-Sky Automated Survey for SuperNovae, or ASAS-SN, rather menacingly pronounced “assassin.” ASASSN-15lh is one of 180 supernovae discovered by ASAS-SN in 2015, and one of 270 discovered by the project since its start two years ago.

“This particular story is an extreme example of something, and I'm very happy that we have found it,” says Stanek. “People have been studying supernovae for many decades now, and our project is just two years old, and yet, during these two years, we were able to find that object, which is challenging to everybody who is working on supernovae.”

Two of the 14-centimeter diameter lens telescopes in use for the All Sky Automated Survey for SuperNovae that discovered ASASSN-15lh. Since this photo was taken, two more telescopes have been added to the ASAS-SN station in Cerro Tololo, Chile.

Jin Ma (Beijing Planetarium)

Studying the new supernova quickly became a collaborative effort, as larger telescopes in Chile and South Africa, and even NASA’s Swift space telescope, joined in to confirm the find and take higher-resolution images and spectra. In February 2016, the Hubble Space Telescope will gather images of ASASSN-15lh to help the team determine how close the supernova is to the center of its galaxy. If it’s in the galactic nucleus, astronomers may need to consider another explanation for ASASSN-15lh’s brightness, one involving a star’s interaction with a supermassive black hole. Stanek and Thompson say it’s an unlikely scenario, but one worth investigating.

Watching A Supernova Fade

Supernovae are what astronomers call transient events; they explode, and then they slowly fade.

“The most important thing is going to be to get the spectra of it as it fades, because as it fades, it's getting cooler and bigger, and its luminosity is dropping," says Thomspon. “As it gets cooler, as it becomes less luminous, it becomes harder and harder to see, but it also means you can see through it better; it becomes more transparent.”

That gives astronomers an opportunity to study the inner layers of the supernova, not just its outer edge.

“Usually these things are found even further away, so in which case it's much harder to get good data. So we're getting as good data as possible,” says Stanek.

Thompson and Stanek hope their find will push theoretical physicists to reevaluate their current models of magnetar formation and look for alternate explanations for ASASSN-15lh.

“As a theorist working on these kinds of topics, it gets interesting when extreme events challenge conventional wisdom,” said Thompson. “A lot of times, that's when you can really push theoretical ideas and theoretical models to the limit.”

Meanwhile, Stanek says that ASAS-SN will keep scanning the sky for other interesting new objects. “This approach of really just observing an entire sky as often as possible, is working,” he said.

Via AstronomyCom

Thursday, January 14, 2016

Black Hole

The spectacular jets that shoot from radio galaxies are fueled by plasma swirling around the galaxies' central black holes. Because the black hole at the heart of the Milky Way has comparatively little fuel to draw on, the emission it engenders is feeble. Whether it sustains jets is uncertain. Still, thanks to the black hole's relative proximity, astronomers hope to resolve the structures close to the event horizon that might be responsible for launching jets. With that and other goals in mind, Michael Johnson of the Harvard–Smithsonian Center for Astrophysics and his collaborators have observed the Milky Way's center using the Event Horizon Telescope, an interferometric array of four millimeter-wavelength telescopes at sites in Arizona, California, and Hawaii. In the millimeter band, the emission from the center of the galaxy is dominated by synchrotron radiation from relativistic electrons spiraling around magnetic field lines. By measuring and mapping the radiation's polarization, the researchers identified regions that extend up to six Schwarzschild radii from the event horizon where the magnetic field lines appear to be ordered. What's more, they also identified turbulent regions with intense temporal variability, which may explain how black holes can efficiently pull matter inward. Although the origin of the ordered regions is uncertain, their presence lends support to theories in which magnetic fields redirect and channel orbiting plasma into outward flowing jets.
(M. D. Johnson et al., Science 350, 1242, 2015.)
Via Physics Today

Sunday, January 3, 2016

Heat death of the universe


The heat death of the universe is a historically suggested ultimate fate of the universe in which the universe has diminished to a state of no thermodynamic free energy and therefore can no longer sustain processes that consume energy (includingcomputation and life). Heat death does not imply any particular absolute temperature; it only requires that temperature differences or other processes may no longer be exploited to perform work. In the language of physics, this is when the universe reachesthermodynamic equilibrium (maximum entropy). The hypothesis of heat death stems from the ideas of William Thomson, 1st Baron Kelvin, who in the 1850s took the theory of heat as mechanical energy loss in nature (as embodied in the first two laws of thermodynamics) and extrapolated it to larger processes on a universal scale.
Since Kelvin's day, it has been recognized by a respected authority on thermodynamics, Max Planck, that the phrase 'entropy of the universe' has no meaning because it admits of no accurate definition. Kelvin's speculation falls with this recognition.


from Wikipedia